Hexagonal core-shell and alloy Au/Ag nanodisks on ZnO nanorods and their optical enhancement effect

نویسندگان

  • Junming Zhang
  • Boya Lai
  • Zuxin Chen
  • Sheng Chu
  • Guang Chu
  • Rufang Peng
چکیده

Au and Ag hybrid hexagonal nanodisks were synthesized on ZnO nanorods' (0002) surface via a new two-step deposition-annealing method. The structural, compositional, as well as optical investigations were carried out systematically to find out the nanodisks' formation mechanism and optical enhancement effect. It was shown that the core-shell Au/Ag nanodisk can be formed under rapid annealing temperature of 500°C, while Au/Ag alloy nanodisks are formed if higher temperatures (>550°C) are applied. The optical effect from these nanodisks was studied through photoluminescence and absorption spectroscopy. It was found that the carrier-plasmon coupling together and carrier transfer between metal and ZnO contribute to the emission enhancement. Furthermore, the results suggest that the composition of nanodisk on the vicinity of metal/ZnO interface plays an important role in terms of the enhancement factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence

Triangular and hexagonal shaped noble metal (Au, Ag, Pt, Pd) nanodisks were synthesized on the top facets of ZnO nanorods via simple deposition-annealing method. Other metals (Ni, Cu, Cr, Pb, Al) only formed irregular shaped nanostructures on ZnO nanorods. The morphology, elemental composition, as well as growth mechanism of the metal nanodisks/ZnO nanorod composite materials were studied. The ...

متن کامل

Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers

We demonstrate an individual ZnO hexagonal microrod on the surface of an Au substrate which can become new sources for manufacturing miniature ZnO plasmon lasers by surface plasmon polariton coupling to whispering-gallery modes (WGMs). We also demonstrate that the rough surface of Au substrates can acquire a more satisfied enhancement of ZnO emission if the surface geometry of Au substrates is ...

متن کامل

Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles.

Metal nanoparticles (NPs) are of great interest due to their special optical, [ 1–3 ] electronic, [ 4–8 ] and catalytic [ 9,10 ] properties. [ 11 ] Among metal NPs, Au NPs have been investigated most extensively because of their facile preparation, resistance to oxidation, and surface plasmon resonance (SPR) band that can absorb and scatter visible light. [ 3 ] Core/ shell and alloy bimetallic ...

متن کامل

In-Doped ZnO Hexagonal Stepped Nanorods and Nanodisks as Potential Scaffold for Highly-Sensitive Phenyl Hydrazine Chemical Sensors

Herein, we report the growth of In-doped ZnO (IZO) nanomaterials, i.e., stepped hexagonal nanorods and nanodisks by the thermal evaporation process using metallic zinc and indium powders in the presence of oxygen. The as-grown IZO nanomaterials were investigated by several techniques in order to examine their morphological, structural, compositional and optical properties. The detailed investig...

متن کامل

Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes.

Three-layer core-shell plasmonic nanorods (Au/Ag/SiO2-NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014